New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway.

نویسندگان

  • Derek J Hausenloy
  • Derek M Yellon
چکیده

Reperfusion is a pre-requisite to salvaging viable myocardium, following an acute myocardial infarction. Reperfusion of ischaemic myocardium, however, is not without risk, as the act of reperfusion itself can paradoxically result in myocyte death: a phenomenon termed lethal reperfusion-induced injury. Therapeutic strategies that target and attenuate reperfusion-induced cell death may provide novel pharmacological agents, which can be used as an adjunct to current reperfusion therapy, to limit myocardial infarction. Recent evidence has implicated apoptotic cell death during the phase of reperfusion as an important contributor to lethal reperfusion-induced injury. Targeting anti-apoptotic mechanisms of cellular protection at the time of reperfusion may therefore offer a potential approach to attenuating reperfusion-induced cell death. In this regard, ischaemia-reperfusion has been shown to activate the anti-apoptotic pro-survival kinase signalling cascades, phosphatidylinositol-3-OH kinase (PI3K)-Akt and p42/p44 extra-cellular signal-regulated kinases (Erk 1/2), both of which have been implicated in cellular survival. Activating these pro-survival kinase cascades at the time of reperfusion has been demonstrated to confer protection against reperfusion-induced injury. We and others have shown that insulin, insulin-like growth factor-1 (IGF-1), transforming growth factor-beta1 (TGF-beta1), cardiotrophin-1 (CT-1), urocortin, atorvastatin and bradykinin protect the heart, by activating the PI3K-Akt and/or Erk 1/2 kinase cascades, when given at the commencement of reperfusion, following a lethal ischaemic insult. Pharmacological manipulation and up-regulation of these pro-survival kinase cascades, which we refer to as the Reperfusion Injury Salvage Kinase (RISK) pathway, as an adjunct to reperfusion may therefore protect the myocardium from lethal reperfusion-induced cell death and provide a novel strategy to salvaging viable myocardium and limiting infarct size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats

Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...

متن کامل

Cardioprotective effect of melatonin against ischaemia/reperfusion damage.

Melatonin (N-acetyl-5-methoxytryptamine) has been shown by several workers to protect the heart against ischaemia/reperfusion damage. Melatonin, both in the picomolar and micromolar range, significantly reduces infarct size and improves functional recovery during reperfusion. This may be due to its free radical scavenging and anti-oxidant effects, while the melatonin receptor and its marked ant...

متن کامل

Myocardial structure, function and ischaemic tolerance in a rodent model of obesity with insulin resistance.

Obesity and its comorbidities (dyslipidaemia, insulin resistance and hypertension) that together constitute the metabolic syndrome are all risk factors for ischaemic heart disease. Although obesity has been reported to be an independent risk factor for congestive heart failure, whether obesity-induced heart failure develops in the absence of increased afterload (induced by hypertension) is not ...

متن کامل

Binding of elastin peptides to S-Gal protects the heart against ischemia/reperfusion injury by triggering the RISK pathway.

Elastin peptides (EPs) generated by hydrolysis of elastic fibers by elastinolytic enzymes display a wide spectrum of biological activities. Here, we investigated their influence on rat heart ischemia-mediated injury using the Langendorff ex vivo model. EPs, i.e., kappa elastin, at 1.32- and 660-nM concentrations, when administered before the ischemia period, elicited a beneficial influence agai...

متن کامل

Genetic deletion of the adaptor protein p66Shc increases susceptibility to short-term ischaemic myocardial injury via intracellular salvage pathways.

AIMS Several intracellular mediators have been implicated as new therapeutic targets against myocardial ischaemia and reperfusion injury. However, clinically effective salvage pathways remain undiscovered. Here, we focused on the potential role of the adaptor protein p66(Shc) as a regulator of myocardial injury in a mouse model of cardiac ischaemia and reperfusion. METHODS AND RESULTS Adult m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cardiovascular research

دوره 61 3  شماره 

صفحات  -

تاریخ انتشار 2004